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Abstract

Key message We developed a universally applicable

planning tool for optimizing the allocation of resources

for one cycle of genomic selection in a biparental pop-

ulation. The framework combines selection theory with

constraint numerical optimization and considers geno-

type 3 environment interactions.

Abstract Genomic selection (GS) is increasingly imple-

mented in plant breeding programs to increase selection

gain but little is known how to optimally allocate the

resources under a given budget. We investigated this

problem with model calculations by combining quantita-

tive genetic selection theory with constraint numerical

optimization. We assumed one selection cycle where both

the training and prediction sets comprised double haploid

(DH) lines from the same biparental population. Grain

yield for testcrosses of maize DH lines was used as a model

trait but all parameters can be adjusted in a freely available

software implementation. An extension of the expected

selection accuracy given by Daetwyler et al. (2008) was

developed to correctly balance between the number of

environments for phenotyping the training set and its

population size in the presence of genotype 9 environ-

ment interactions. Under small budget, genotyping costs

mainly determine whether GS is superior over phenotypic

selection. With increasing budget, flexibility in resource

allocation increases greatly but selection gain leveled off

quickly requiring balancing the number of populations with

the budget spent for each population. The use of an index

combining phenotypic and GS predicted values in the

training set was especially beneficial under limited

resources and large genotype 9 environment interactions.

Once a sufficiently high selection accuracy is achieved in

the prediction set, further selection gain can be achieved

most efficiently by massively expanding its size. Thus,

with increasing budget, reducing the costs for producing a

DH line becomes increasingly crucial for successfully

exploiting the benefits of GS.

Introduction

Plant breeding programs are currently transformed by the

implementation of genomic selection (GS) approaches (e.g.

Bernardo and Yu 2007; Heffner et al. 2009; Lorenz et al.

2011; Xu et al. 2012). After initially proposing GS in the

field of animal breeding (Meuwissen et al. 2001), many

statistical techniques suitable for GS have been intensively

studied (de los Campos et al. 2013; Riedelsheimer et al.

2012b; Heslot et al. 2012). GS has rapidly evolved into its

own research field and developed standards to render

results comparable across studies (Daetwyler et al. 2013).

For GS in maize, different application scenarios have been

proposed. These range from predicting the breeding value

of lines from diverse collections (Riedelsheimer et al.

2012a) to biparental populations (Lorenzana and Bernardo

2009; Riedelsheimer et al. 2013) and single-cross hybrids

from their parental inbred lines (Technow et al. 2012).

Despite this remarkable progress, little efforts have been

made to explicitly optimize the allocation of resources to
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maximize the economic return of investment in terms of

selection gain per unit time and money.

This is surprising as in the early beginning of genomics-

assisted breeding, large efforts have been made to analyze

the economic efficiency of marker-assisted selection

(MAS), the conceptual predecessor of GS. Lande and

Thompson (1990) showed how selection efficiency can be

increased by using an index incorporating both phenotypic

and marker information. Later, specific aspects of the rel-

ative efficiency of MAS were studied. Moreau et al. (1998)

investigated the overestimation of marker effects in popu-

lations of finite size and later the relative costs for geno-

typing versus phenotyping (Moreau et al. 2000). Further,

the long-term efficiency of MAS over several cycles of

selection was investigated in both plant breeding (Moreau

et al. 2004) and animal breeding scenarios (Villanueva

et al. 2004; Dekkers and Hospital 2002).

Meanwhile, MAS was found to be less efficient than

initially advocated, especially for highly polygenic traits.

The main reasons for this include the small proportion of

the genetic variance explained by the detected quantitative

trait loci (QTL) and the low transferability across popula-

tions (Melchinger et al. 1998; Bernardo 2008; Xu and

Crouch 2008), especially, if no major QTL are present.

Although GS is often seen as conceptually different from

MAS, it is similar to MAS to the extent that marker effects

also have to be estimated with sufficient precision. In

addition, the transferability across populations is not

always guaranteed but heavily depends on the design of the

training set (Riedelsheimer et al. 2013). Hence, modeling

prediction accuracy as a function of the trait and population

parameters is crucial for optimizing the allocation of

resources under GS.

Under various simplifying assumptions (e.g., indepen-

dent, biallelic and additive loci), Daetwyler et al. (2008)

derived a functional relationship between prediction

accuracy under GS and the training set size, heritability of

the trait and the effective number of loci. Meanwhile,

several empirical studies suggest that for a given set of

environments, the proposed formula is fairly accurate for at

least one selection cycle within biparental populations,

although some variation among traits was observed

(Combs and Bernardo 2013; Riedelsheimer et al. 2013);

Thus, it could be used as a tool for guiding the allocation of

resources in GS, at least within the space of inference for

which the formula was derived.

Recently, Lorenz (2013) used the proposed formula in a

simulation study to analyze the effect of different resource

allocations on MAS and GS for biparental populations. By

varying the number of genotypes and replications, the

author found a greater flexibility for treating the trade-

off between these two parameters in GS when compared

with MAS. However, many aspects regarding the

implementation of GS to gain maximum benefit from GS

are still unclear. For example, the proposed formula of

Daetwyler et al. (2008) does not incorporate the effect of

genotype 9 environment interactions in a plant breeding

context, which is important to reasonably balance between

number of environments and total population size. In

addition, when the variance components as well as the

costs for phenotyping and genotyping are assumed to be

known, several questions arise: (1) How should the budget

be optimally allocated between the training set and the

prediction set and to what extent is this influenced by the

available budget? (2) How does the optimum allocation of

resources depend on (a) the relative costs of genotyping

versus phenotyping, (b) the ratio of the genotypic variances

to the masking variances, and (c) the available budget? (3)

Under which circumstances is phenotypic selection supe-

rior to GS?

Our objective was to derive a theoretical framework

including an appropriate treatment of genotype 9 envi-

ronment interactions under which these questions can be

directly answered. This was done for one selection cycle

where both training and prediction sets contain DH lines

from the same biparental population. We combined clas-

sical selection theory for quantitative traits with constraint

numerical optimization. As a point of reference, we

focused on grain yield at the testcross level in maize with

variance components drawn from the literature. In addition,

we provide a user-friendly software for free use to

encourage practitioners to analyze and optimize their

resource allocation given their specific cost and trait

parameters.

Theory

GS as a special case of the two subsample scenario

Selection accuracy (rA) is generally defined as the corre-

lation between the estimated breeding value of candidates

and their true breeding value. If only phenotypic values are

available, rA corresponds to the square root of the herita-

bility of the trait, rA = h (Falconer and Mackay 1996,

p. 189). GS with selection performed in both the training

set and prediction set can be seen as a special case of

selecting candidates across two subsets of a population

with different selection accuracies.

Suppose a base population of candidates with breeding

values independently, identically distributed, N (0,1), from

which two sets of candidates, p1 and p2 with sample size

N1 ¼ wN and N2 ¼ 1� wð ÞN are chosen at random, where

w 2 ð0; 1Þ. The estimated breeding values of candidates

from p1 and p2 are determined by different tests with

selection accuracies rA1
and rA2

, respectively. We assumed
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that Ns ¼ aN candidates (for a 2 ð0; 1Þ) are selected from

p1 [ p2 based on their estimated breeding values, with

Ns1
¼ hNs candidates being selected from p1 and Ns2

¼
ð1� hÞNs candidates being selected from p2, where

h 2 max 0; aþw�1
a

� �
; min 1; wa

� �h i
. Thus, the proportion of

candidates selected in p1 and p2 is a1 ¼
Ns1

N1
¼ h

w a and

a2 ¼
Ns2

N2
¼ 1�hð Þ

1�wð Þ a, respectively. Then, the expected genetic

gain DG under this selection scheme is obtained as

DG ¼ h DG1 þ ð1� hÞDG2

¼ h iða1Þ rA1
þ ð1� hÞ iða2Þ rA2

; ð1Þ

where ið:Þ is the corresponding selection intensity, i.e., the

standardized selection differential (Falconer and Mackay

1996, p. 189). In GS, p1 corresponds to the training set pT

of size NT with selection accuracy rAT
and p2corresponds to

the prediction set pP of size NP with selection accuracyrAP

and our goal is to allocate the resources between pT and pP

such that the selection gain across both sets is maximized.

Selection accuracy under GS in the prediction set

We assumed that the training set pT is evaluated in a subset

of E environments with one replication because this is

expected to yield highest selection gain based on the results

of phenotypic selection (Utz 1969) and simulations of GS

(Lorenz 2013). In the prediction set pP, selection aims to

select the candidates with highest genotypic values on the

basis of their genomic predicted values. Thus, rAP
corre-

sponds to rðg; ĝEÞ, the correlation between the true geno-

typic value (g) and its genomic predicted value for the set

of E environments (ĝE) at which pT has been phenotyped

and gE denotes the expected genotypic value across the set

of E environments. Thus, covðgE; ĝEÞ ¼ r2
gE
¼ r2

g þ
r2

ge

E
,

where r2
g denotes the genotypic variance and r2

ge the

genotype 9 environment variance component across the

entire set of target environments. Then (Melchinger,

unpublished results),

rðg; ĝEÞ ¼ rðg; gEÞ � rðgE; ĝEÞ with rðg; gEÞ ¼
ffiffiffiffiffiffiffi
r2

g

r2
gE

s
:

ð2Þ

For estimating rðgE; ĝEÞ, we used results from

Daetwyler et al. (2008) yielding

rðgE; ĝEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTh2

E

NTh2
E þMe

s
ð3Þ

where Me is the number of independent loci and h2
E ¼

r2
gE

r2
gE
þr2

e=E
¼ r2

gþr2
ge=E

r2
gþr2

ge=Eþr2
e=E

refers to the heritability for

phenotyping the training set in the E environments.

Combining Eqs. (2) and (3) yields

rAP
¼ rðg; ĝEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

g

r2
g þ r2

ge=E

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTh2

E

NTh2
E þMe

s
: ð4Þ

Selection accuracy for index selection in the training set

In the training set pT, we practice selection based on an

optimal index combining the phenotypic value (y) and the

genomic predicted genomic value (ĝE) across the set of

E environments. Applying results of Lande and Thompson

(1990) initially developed for combined MAS, the opti-

mum index is obtained as I ¼ bPyþ bMĝE, where the rel-

ative weights bP and bM are found to be

bM

bP

¼ ð1=h2Þ � 1

1� r2ðg; ĝEÞ
with h2 ¼

r2
g

r2
g þ r2

ge=E þ r2
e=E

: ð5Þ

Selection accuracy in pT is then obtained as the

correlation of the index I with the true genotypic value

(Lande and Thompson, 1990):

rAT
¼ rðg; IÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðg; ĝEÞ þ

h2ð1� r2ðg; ĝEÞÞ
2

1� h2r2ðg; ĝEÞ

s
: ð6Þ

Selection gain in the training set and in the prediction

set

Selection gain in pT and pP was calculated as DGT ¼
iðaTÞ rAT

and DGP ¼ iðaPÞrAP
, respectively, where ið:Þ is

the selection intensity and aT and aP are the proportions of

candidates selected in each set. The total selection gain in

pT [ pP was then calculated as the weighted sum

DGGS ¼ hDGT þ ð1� hÞDGP: ð7Þ

Note that we consider a single breeding cycle for a

single DH population split into a training and prediction

set. Thus, selection gain refers to the improvement of the

genotypic values of the DH lines in this cycle only.

Assumptions of the parameters in the model

calculations

Effective number of loci

Hitherto, at least three formulas for inferring Me have been

proposed. All three depend on the effective population size

(Ne) and the length of the genome (L) or the average length

of a chromosome (l):

1. Me ¼ 2NeL (Meuwissen and Goddard 2010)

2. Me ¼ 2NeL= logð4NeLÞ (Goddard 2009)

3. Me ¼ 2NeL= logðNelÞ (Goddard et al. 2011).
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Substituting L = 17.96 M taken from the Genetic 2008

Composite Map of Maize (ww.maizegdb.org) and Ne = 1

for DH lines from a biparental population derived from a

F1 plant yields Me = 35.9, 8.4, and 61.3 for formulas 1–3,

respectively. In this study, we assumed Me = 30, which

lies in the middle of the proposed range. This value is also

close to Me = 28 chosen by Lorenz (2013) for DH lines

from biparental maize populations using another line of

reasoning based on the number of chromosomes and the

expected number of cross-over events.

Budget and costs of phenotyping and genotyping

We assumed a budget B for one population and breeding

cycle expressed in plot equivalents (PE). From this budget,

a fraction b is spent on the training set pT and the

remainder on the prediction set pP. Thus, the budget allo-

cated to the training set is BT = bB and the budget for the

prediction set is BP = (1 - b) B.

Costs for production of one candidate (CC) in the training set

and prediction set, such as production of one doubled haploid

line or and recombinant inbred line is expressed in PE. Costs

per phenotyping unit (CPh), corresponding to one PE, include

the costs for producing the seeds of the test candidates, such as

the proportional cost of producing testcross seed or seed

increase for evaluation of per se performance, as well as the

costs of the plot (land, sowing, harvesting, etc.) and all special

assays (e.g., resistance tests, quality tests in the laboratory)

required for measuring the target trait. Cost for genotyping one

candidate (CG), expressed in units of PE, include costs for

DNA extraction, the genomic assay, and all necessary bioin-

formatic analyzes of the genomic data. For given values of the

budgets allocated to the training set (BT) and the prediction set

(BP), the costs for producing a candidate (CC) and CG, we find

the size of the training set to be

NT ¼
BT

CC þ CG þ E
ð8Þ

and for the size of prediction set, we find

NP ¼
BP

CC þ CG

; ð9Þ

where E refers to the number of environments. Putting

these results together, we find for the selected fraction in

the training set aT ¼ h Ns

NT
and for the prediction set

aP ¼ ð1� hÞ Ns

NP
, where h is the fraction of selected candi-

dates originating from pT.

Example trait

For a numerical example, we chose maize grain yield at the

testcross level as a model trait for detailed investigation with

values of the variance components taken from Lorenzana and

Bernardo (2008): r2
g ¼ 0:65, r2

ge ¼ 0:15, and r2
e ¼ 1:11. The

ratios of variance components were thereforej1 =
r2

ge

r2
g

= 0.231

and j2 =
r2

e
r2

g
= 1.708. CC was set to 1 if not explicitly stated

otherwise. CG was set to a rather low value of 0.3 to account for

the decline in genotyping costs, especially, when used in a

streamlined commercial breeding program. A summary of all

parameter assumptions is given in Table 1.

Optimization of the total selection gain under GS

and PhS

Constraint optimization approach

Our goal was to find the optimum values V� ¼ b�;E�; h�ð Þ
that maximize the total genetic gain DGGS for given values

of UGS ¼ j1; j2;Me;B;CC;CG;Nsð Þ:
DGGS V� Uj GS

� �
¼ max DGGS V UGSjð Þf g:

In addition, we determined the optimum allocation of

resources for maximizing the genetic gain under phenotypic

selection by finding the optimum value E� that maximizes

DGPhS ¼ iðaÞ � h with a ¼ Ns

N
and N ¼ B

CC þ E

for given values of UPhS ¼ ðj1; j2;B;CC;NsÞ :

DGPhS E� UPhSjð Þ ¼ max DGPhS E UPhSjð Þf g: ð10Þ

Thus, finding V* and E� reduces to numerically solving

nonlinear constraint optimization problems. Here, we used the

interior point algorithm implemented in the Find Maximum

function in Mathematica 9.0 (Wolfram Research Inc., 2013).

Relative efficiency of GS

For comparison of our GS scheme with pure phenotypic

selection, we calculated the relative efficiency of GS for

given values of UGS and UPhS by the ratio:

RE ¼
DGGS V� Uj GS

� �

DGPhS E� Uj PhS

� � : ð11Þ

Results

Optimum resource allocation for GS under variable

budget

Selection gain under GS (DGGS) showed a substantial

increase from 0.5 to 2.0 when increasing the budget

B from 100 to 1,500 plot equivalents (PE), but further

increase in B resulted in diminishing additional selection
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gain (Fig. 1a). Relative efficiency (RE) increased to 1.25 at

B = 500 PE and flattened off to a maximum of 1.29 at

B = 5,000 PE. The relative contribution of the prediction

set (ð1� hÞ � DGP) to the total selection gain increased

convexly with increasing B. In contrast, the relative con-

tribution of the training set (h� DGT) to the total selection

gain increased until a maximum at *1.0 was reached at

B * 500 PE and declined afterwards. At this point, the

fraction of the budget allocated to the training set

(parameter b) reached the maximum of 0.82 (Fig. 1b) and

declined afterwards in a concave curve. The trajectory of

parameter h followed the one of b closely, but at a reduced

level. Whereas the optimum size of the training set (N�T)

increased convexly with a decreasing gradient as a function

of B, the optimum size of the prediction set (N�P) increased

in a concave curve until a budget of B * 1,000 PE and

linearly afterwards (Fig. 1c). The optimum number of

environments (E*) was 1 for B� 500 PE and increased in a

concave curve afterwards and exceeded three only for

B [ 4,000 PE (Fig. 1d). The fractions aT and aP selected

from the training and prediction sets declined rapidly with

increasing budget where aT remained marginally higher

than aP (Fig. 1e). Selection accuracy in the training set

(rAT
) was higher than in the prediction set over the whole

budget range (Fig. 1f). Both selection accuracies increased

rapidly to [0.8 with a budget of *1,000 PE but thereafter,

the gradient of the curves rapidly decreased.

The response curve of DGGS as a function of b and

E was commonly fairly flat in the vicinity of the optimum

parameter combination V* (Fig. 2). Irrespective of the

budget, the values of b could deviate up to 0.2 from b*

without much reduction in DGGS. The level, at which

values for E could deviate from E* without substantially

compromising DGGS, depended on the budget and was

larger for large values of B.

Influence of costs, Ns, and Me on resource allocation

and relative efficiency of GS

Costs for producing a candidate (CC) had a strong influence

on DGGS and RE of GS as well as the ratio of the optimum

training set size (N�T) to the optimum prediction set size

(N�P) (Table 2). With a budget of 500 PE (5,000 PE),

reducing CC from 1 to 0.01 increased DGGS by 32 %

Fig. 1 Influence of the available budget in plot equivalents (PE) on

(a) the relative efficiency (RE) of GS and the weighted selection gains

in the training and prediction sets (which sum up to DGGS),

(b) optimum values h* and b*, (c) the optimum size of training set

(N�T) and the prediction set (N�P), (d) the optimum number of

environments (E*), (e) the selected fractions in the training set (aT)

and the prediction set (aP), and (f) the selection accuracies in the

training set (rAT
) and prediction set (rAP

). The square root of the

heritability (h) in the training set is shown for comparison.

Assumptions were j1 = 0.231, j2 = 1.708, CC = 1, CG = 0.3,

Ns = 25, Me = 30
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(16 %) and RE by 16 % (13 %) by expanding the predic-

tion set size *10 (4.5) fold and increasing the training set

size only marginally. With B = 500 PE, N�P reached zero at

CC = 2. Further increase in CC led to a further decrease of

N�T while increasing E* slightly. Increasing costs for

genotyping (CG) lead to a nearly linear decline of RE

(Fig. 3). The gradient of the decline strongly depended on

the available budget. The smaller the budget, the stronger

the influence of CG on RE was. Whereas under B = 500

PE, equal efficiency of GS and phenotypic selection

Fig. 2 Contour plots of DGGS as a function of the number of test

environments E and the proportion b of the budget allocated to the

training set for different values of the available budget (B). The

optimum parameter combination V* is indicated as a red dot.

Assumptions were j1 = 0.231, j2 = 1.708, CC = 1, CG = 0.3,

Ns = 25, Me = 30 (color figure online)

Table 1 Summary of

assumptions on and treatments

of parameters for GS of grain

yield at the testcross level

Parameter Assumption/treatment

pT Training set DH lines originating from the same biparental cross as pP

pP Prediction set DH lines originating from the same biparental cross as pT

j1 Variance ratio r2
ge=r

2
g

0.231

j2 Variance ratio r2
e=r

2
g

1.708

Me Effective number of loci 30

B Budget Range of 100–5,000 PE

CC Costs for producing a candidate 1 PE

CG Costs for genotyping 0.3 PE

CPh Costs related to phenotyping 1 PE

h Fraction of selected candidates

originating from pT

Optimized

b Fraction of B allocated to pT Optimized

E No. of environments in which pTis

phenotyped

Optimized

Ns No. of selected genotypes 25

NT No. of genotypes in pT Inferred from CC, CG, b, B, and L

NP No. of genotypes in pP Inferred from CC, CG, b, and B

aT Selected fraction in pT h Ns

NT

aP Selected fraction in pP ð1� hÞ Ns

NP

rAT
Selection accuracy in pT Correlation between optimum index combining phenotypic and

genomic predicted genotypic values across E environments,

and the true genotypic value

rAP
Selection accuracy in pP Formula proposed by Daetwyler et al. (2008) extended to

account for genotype 9 environment interactions

Number of selection cycles One

Number of replications per environment

in phenotyping

One

2840 Theor Appl Genet (2013) 126:2835–2848

123



(RE = 1) was reached at CG * 2 PE, this value was

reached at CG * 3 PE with B = 1,000 PE.

Relative efficiency declined in a concave curve with the

number of independent loci (Me, Fig. 4). The extent of this

decline was largely influenced by the available budget.

From Me = 3 to 150, RE declined from 1.51 to 1.07 under

a budget of 500 PE and from 1.38 to 1.18 under a budget of

5,000 PE.

Increasing the number of selected genotypes (Ns) led to

an increasing RE by reducing the size of the training set and

the number of environments while enlarging the prediction

set (Table 3). Under a small budget, Ns had a stronger

influence on the RE and the size of N�T and N�P than under a

large budget. The optimum number of environments E* was

only marginally reduced by increasing values of Ns.

Resource allocation for traits with different relative size

of masking variances

Traits other than grain yield were modeled by changing one

of two variance component ratios while keeping the other

Table 2 Selection gain (DGGS) and relative efficiency (RE) as well as optimum resource allocation of GS for yield at the testcross level for

different costs of producing a candidate (CC) under two budgets (B) in plot equivalents (PE)

CC B = 500 PE B = 5,000 PE

DGGS RE N�T N�P E* DGGS RE N�T N�P E*

0.01 1.83 1.46 175 701 1.3 2.90 1.46 456 10,533 3.5

0.05 1.80 1.44 175 610 1.3 2.87 1.44 454 9,324 3.5

0.1 1.76 1.42 174 521 1.3 2.83 1.43 452 8,148 3.5

0.5 1.55 1.32 171 199 1.2 2.63 1.35 439 3,979 3.3

1 1.39 1.26 172 68 1.1 2.49 1.29 430 2,343 3.3

1.5 1.29 1.22 174 5 1.0 2.39 1.26 424 1,606 3.2

2 1.20 1.20 147 0 1.1 2.31 1.23 419 1,186 3.1

2.5 1.13 1.18 126 0 1.2 2.25 1.22 416 914 3.1

3 1.11 1.17 110 0 1.3 1.20 1.20 413 724 3.0

Assumptions were j1 = 0.231, j2 = 1.708, Me = 30, CG = 0.3, Ns = 25

N�T Optimum number of genotypes in the training set

N�P Optimum number of genotypes in the prediction set

E* Optimum number of environments for phenotyping

Fig. 3 Relative efficiency (RE) of GS compared to phenotypic

selection (PhS) depending on genotyping costs and the available

budget. Vertical and horizontal gray lines show the point at which

genotyping costs equal phenotyping one plot and at which selection

gain of GS equals that of PhS. Assumptions were j1 = 0.231,

j2 = 1.708, CC = 1, Ns = 25, Me = 30

Fig. 4 Relative efficiency (RE) of GS compared to phenotypic

selection (PhS) depending on the assumed number of independent loci

(Me) and budget. Assumptions were j1 = 0.231, j2 = 1.708,

CC = 1, CG = 0.3, Ns = 25
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one at the value assumed for grain yield (Fig. 5). Increas-

ing the ratio of the genotype 9 environment to the geno-

typic variance component (j1) led to a stronger increase in

the number of environments E* under GS than E� under

PhS (Fig. 5a). Increasing j1 from 0.02 to 0.77 led to a

linear decrease of the population size under PhS from 898

to 742 while the size of the training set under GS declined

rapidly from 1,093 to 262 (Fig. 5b). With this change in

resource allocation, RE stayed nearly constant at *1.3 and

the difference between selection accuracy in the training

set (rAT
) and in the prediction set (rAP

) became increasingly

larger with increasing j1 (Fig. 5c). For PhS, increasing the

ratio of the error variance to the genotypic variance com-

ponent (j2) led to a strong increase in the number of

environments (Fig. 5d) and a rapid decline in the popula-

tion size (Fig. 5e). In contrast, the number of environments

increased only slightly under GS while the training set was

slightly increased with increasing j2. RE increased

strongly with increasing j2 and difference between rAT
and

rAP
became smaller (Fig. 5f).

Discussion

In this study, we provide the theory for a constraint-based

approach to analytically optimize the allocation of

resources in genomic selection (GS) for one breeding cycle

with DH lines of one population under consideration of

genotype 9 environment interactions. Besides providing

practitioners of GS with an easy-to-use software tool to

make better use of their money, our objective was also to

give answers to several important but still open questions

related to resource allocation and selection strategy in GS.

Optimum resource allocation under variable budget

An important issue in the implementation of GS concen-

trates on how to optimally split the total budget between

expenditure for the training set on the one hand and the

prediction set on the other hand. The changes in the opti-

mal resource allocation with increasing budget (Fig. 1)

clearly show that once a certain amount of money is spent

for producing, genotyping, and especially phenotyping a

sufficiently large training set with high precision, further

selection gain can only be achieved by increasing the

selection intensity in the prediction set through massively

expanding its size. With our model trait, this change

occurred with a budget of B * 500 PE, for which the

optimum fraction of B allocated to the training set (b*)

reached its maximum (Fig 1b). From this point on, the

training set warrants a sufficiently high prediction accuracy

so that proportionally more money can be spent on the

prediction set. As the optimum fraction of the budget allo-

cated to the training set (b*) decreases with B [ 500, so

does h*. Thus, as the proportion of money invested in the

prediction set further increases above this threshold, so

does the fraction of the total number of candidates to be

selected from the prediction set. Since with an increasing

budget, the bulk of money is best invested by expanding

the prediction set, cutting down on the costs for producing

a candidate is central, once the training set warrants high

enough selection accuracy in the prediction set (rAP
).

Table 3 Selection gain (DGGS) and relative efficiency (RE) as well as optimum resource allocation of GS for grain yield at the testcross level for

different numbers of selected genotypes (Ns) under two budgets (B) in plot equivalents (PE)

Ns B = 500 PE B = 5,000 PE

DGGS RE N�T N�P L* DGGS RE N�T N�P L*

3 2.12 1.13 184 0 1.4 3.09 1.20 474 2,067 3.6

5 1.96 1.16 193 0 1.3 2.96 1.22 465 2,128 3.5

10 1.73 1.19 189 23 1.2 2.76 1.25 451 2,216 3.4

15 1.58 1.22 182 42 1.2 2.65 1.27 442 2,270 3.3

20 1.48 1.24 176 56 1.1 2.56 1.28 435 2,310 3.3

25 1.39 1.25 172 68 1.1 2.49 1.29 430 2,343 3.3

30 1.32 1.27 168 78 1.1 2.43 1.30 425 2,370 3.2

35 1.26 1.29 164 87 1.1 2.39 1.31 421 2,393 3.2

40 1.21 1.30 161 95 1.0 2.34 1.32 418 2,413 3.2

45 1.16 1.31 158 102 1.0 2.30 1.33 415 2,432 3.1

50 1.11 1.33 156 109 1.0 2.27 1.34 412 2,449 3.1

Assumptions were j1 = 0.231, j2 = 1.708, Me = 30, CC = 1, CG = 0.3

N�T Optimum number of genotypes in the training set

N�P Optimum number of genotypes in the prediction set

E* Optimum number of environments
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Table 2 shows that moderate gains in RE can be achieved

by reducing costs for producing a candidate (CC). Although

difficult to achieve in the short-term, this could be targeted

in maize by developing inducer lines with a higher in vivo

haploid induction rate (Prigge et al. 2012). Moreover, more

efficient high-throughput screening techniques for identi-

fying haploid kernels (Melchinger et al. 2013) as well as

increasing the rate of fertile diploid plants in the D0 gen-

eration can help to reduce the value for CC.

However, DGGS as a function of B follows a curve with

rapidly diminishing marginal returns in selection gain

(Fig. 1a). At a budget of B = 3,000 PE, DGGS already

reached more than 90 % of DGGS achieved with the largest

budget of B = 5,000 PE. Thus, it is important not to invest

too much money in one population but to balance the

number of populations with the budget spent for each

population.

From our theoretical results in Eq. (3) and (6) it follows

that rAT
is always at least as high asrAT

, independent of the

genotyping and phenotyping costs. Hence, combining

phenotypic and GS predicted values should always pay off

when compared to pure GS. As illustrated by Fig. 1f, the

difference between both selection accuracies is larger

under a small budget and approaches almost zero under a

budget B = 5,000 PE. This is in contrast to Lorenz (2013),

who concluded from his simulation results that in the

training set, selection accuracies were lower for the index

than for GS predicted values alone. One difference could

be that Lorenz (2013) considers only replications in a

single environment and ignored genotype 9 environment

interactions. Moreover, Endelman et al. (2013) proved

under certain assumptions that the optimal index weight for

the phenotypic score is zero, if the GS model is of the best

linear predictor class. In this case, selection accuracy in the

training set is the same as in the prediction set leading to

slightly lower total selection gains DGGS. It remains to be

shown, however, if this holds true in general and for other

frequently used GS models, such as BayesB or Bayesian

LASSO. We therefore decided to adhere to the selection

index framework. In the case of low budget and high costs

Fig. 5 Influence of the variance ratios j1 =
r2

ge

r2
g

and j2 =
r2

e
r2

g
on a,

d the optimum number of environments (E�,E�) under phenotypic

selection (PhS) and genomic selection (GS); b, e the optimum size of

the population under PhS (N�), the optimum size of the training set

(N�T), and the optimum size of the prediction set (N�P), and c, f the

relative efficiency (RE) of GS and the selection accuracy in the

training set (rAT
) and in the prediction set (rAP

). The influence of j1

(j2) was analyzed while keeping the corresponding other variance

ratio j2 (j1) constant at j2 = 1.708 and j1 = 0.231, respectively.

Variance ratios for grain yield at the testcross level are shown as grey

vertical lines. Assumptions were B = 5,000 PE, CG = 0.3, Me = 30,

Ns = 25
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for producing a candidate, the optimum size of the pre-

diction set can reach zero, while still obtaining RE [ 0

owing to the use of the index in the training set (Table 2).

Since using an index in the genotyped and phenotyped

training set comes at no extra costs, our results suggest that

phenotypic data of the training set should always be

incorporated into an index. Breeding programs with limited

budgets will profit most from this approach. In addition to

the use of an index, the selection accuracy in the training

set might also be higher than in the prediction set due to the

generation of spurious LD between unlinked markers

generated by the sampling effect when drawing genotypes

from populations of finite size (Lorenz 2013).

Flexibility of resource allocation

In the discussion of his results, Lorenz (2013) emphasized

the great amount of flexibility in terms of the training pop-

ulation size and the number of replications for achieving a

high selection gain by GS. Our contour plots of DGGS

(Fig. 2) confirmed this conclusion by illustrating that the

response surface of DGGSas a function of b and E is rather flat

in the vicinity of the optimum parameter combination V*.

However, our results also show that the degree of flexibility

strongly depends on the total budget B. The smaller B, the

more restricted is the choice of b and E that yields values of

DGGS close to the maximum. Hence, the optimum allocation

of resources is most critical for smaller budgets B.

Costs and parameters influencing the superiority of GS

over PhS

Whether at all and under which circumstances a new

approach should be implemented by breeders, depends

largely on its efficiency in terms of the selection gain per

unit time and money in comparison with the established

breeding methods. Despite the current euphoria on GS, we

have to emphasize that this does also apply to GS, because

under certain situations DGGS can be inferior to the

selection gain DGPhS under phenotypic selection. In the

case of GS, this is illustrated in Fig. 3 which shows that the

budget and the costs for genotyping predominately deter-

mine whether or not GS is superior to phenotypic selection.

The declining costs for genotyping platforms like geno-

typing-by-sequencing (Elshire et al. 2011; Poland and Rife

2012) suggest that marker costs will not be a major issue in

the future, at least not for major staple crops such as maize.

As an alternative, genotype imputation techniques might be

used if an appropriated reference set is available. In addi-

tion, biparental populations of DH lines with large parental

linkage blocks in the selection candidates require only a

limited number of SNPs to reach maximum selection

accuracy in GS. Thus, cheap genotyping chips with a

limited number of SNPs will be sufficient for this task.

Nevertheless, especially under a small budget, detailed

calculations are recommended to ensure that the imple-

mentation of GS yields additional selection gain on top of

phenotypic selection.

Another crucial assumption is that the proposed formula

of Daetwyler et al. (2008) holds true, upon which our mod-

ification for coping with genotype 9 environment interac-

tion in plant breeding relies. Recently, Riedelsheimer et al.

(2013) showed that if we move away from a single biparental

population to a network of interconnected biparental popu-

lations, the design of the training set is important for the

selection accuracy obtained for progeny of individual

crosses. Further, the assumption on Me is crucial, especially

under a small budget (Fig. 4). Thus, methods need to be

developed for comparing the theoretically proposed formu-

las for Me with the actual number of independent loci. Pro-

vided that large amount of empirical data is available, it

might be better to replace the formula of Daetwyler et al.

(2008) with a function that estimates the relationship

between rðg; ĝEÞ and NT, hE, and Me by fitting real data of the

breeding material of interest. In this case, our theoretical

framework would still be fully valid and applicable.

GS for traits other than grain yield

Like for every indirect selection method, our results also

show that GS becomes increasingly superior when com-

pared to PhS for traits which are difficult to phenotype

because of a high
r2

e
r2

g
ratio (Fig. 5f). Figure 5a also shows

that with the level of genotype 9 environment interactions

commonly encountered for most traits, the optimum

number of environments under GS are below the number

which one would optimally choose under PhS. This illus-

trates the paradigm shift when moving from phenotypic

selection to GS (Lorenz 2013): While evaluating, the

breeding value of each candidate is the basis for selection

in the first approach, estimating and summing effects of

alleles of all QTL captured by genome-wide markers are

the foundation of the second approach. Theoretical and

empirical studies in the field of QTL mapping already

showed that given a minimum number of environments, the

power to detect QTL is maximized by increasing popula-

tion size at the expense of replications (Knapp and Bridges

1990; Schön et al. 2004). However, to assess the effect of

alleles across multiple environments, it is necessary to

evaluate the training set in multiple environments too. With

a small to medium budget (Fig. 2) and moderate to low

masking variances as reflected by j1 and j2 (Fig. 5), the

optimum number of environments E* can fall to two or

even to one. Obviously, this entails a high risk of failure

due to unpredictable environmental conditions. In this case,
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one could (i) exploit the amount of the flexibility in the

choice of E and b (see Fig. 2) using a strategy which yields

nearly equal selection gain, or (ii) work with an augmented

phenotypic randomization layout spread out over several

environments, where each genotype is tested in only two

environments to enable testing a large number of genotypes

but also capturing the allelic effects in a representative set

of environments. Moreover, incorporating the phenotypic

data of the training set together with the GS predicted

values into an index becomes increasingly beneficial with

increasing genotype 9 environment interactions (Fig. 5c).

Extensions over multiple traits and multiple selection

cycles

Until now, we considered selection for a single trait. In

practice, selection is mostly exercised on an index of

several traits. In this case, the costs for producing a DH line

or genotyping in units of PE fall greatly. Recently, it was

shown that selection accuracy of a lowly heritable trait can

be significantly improved if a correlated, highly heritable

trait is incorporated in a multiple-trait GS model (Jia and

Jannink 2012; Calus and Veerkamp 2011). However, it is

unclear whether a GS model should be built for each trait

separately and the predicted values subsequently combined

into an index, or if a GS model should be built directly for

the index of all relevant traits. In addition, optimization

strategies also need to consider the declining costs for

genotyping relative to the costs needed to phenotype sev-

eral instead of only one trait.

While breeders develop their material mainly for iden-

tifying superior parents to be used for creating commercial

hybrids, they use their material also for recycling the best

lines in future selection cycles or recurrent selection pro-

grams. In the latter case, it is unclear how selection gain

per cycle is maintained under GS, i.e., after how many

cycles the GS model has to be re-trained with fresh phe-

notypic data. For allogamous crops, a recent simulation

study found a breeding scheme to be superior if re-trained

after only several cycles, provided that the population size

is sufficiently large (Yabe et al. 2013). It seems likely that a

higher budget allocated to the training set will improve the

stability of the selection accuracy over several cycles.

Results from Massman et al. (2012) suggest diminishing or

erratic gains from later cycles of selection for grain yield

and stover-quality traits in maize. It is also important to

note that phenotyping the training set is usually performed

only in a single year so that environments refers to different

locations. Under this scenario, the genotype 9 environ-

ment interaction variance disregards the genotype 9 year

and genotype 9 year 9 location variances. This leads to

inflated estimates of h2 and consequently of the predicted

selection accuracy. However, the expected upward bias in

the expected selection gain should be similar for GS and

PhS. Jannink (2010) further suggests putting an additional

weight on low frequency favorable alleles to warrant

higher long-term selection gain. The prediction model used

to calculate genomic estimated breeding values seems to

play an important role in this context. Methods such as

BayesB, which try to precisely capture individual QTL,

improved selection accuracies over generations in a study

simulating the situation in animal breeding (Habier et al.

2007). Since economic optimizations rely on solid infor-

mation about the expected predication accuracy, analytical

functions describing the decline of the selection accuracy

with the number of selection cycles need to be developed.

Our approach to optimize the allocation of resources within

one cycle could provide the basis for further extensions to

cope with multiple selection cycles.

Constraint optimization of resource allocation

as a planning tool

As an alternative to the model calculation approach fol-

lowed in this study, one could have conducted simulations

based on stochastically generated genotypic and pheno-

typic values. This approach requires a number of assump-

tions on the genome level including the number of

chromosomes, loci and the distribution of genetic effects.

Simulations might be best suited for investigating the long-

term consequences of different selection schemes because

the effects of selection on the gene pool composition can be

followed in detail over time (Tomerius 2001; Jannink

2010). For one breeding cycle, the model calculation

approach employed in this study has the advantage that it

can be used as a planning tool early in the design of

breeding programs. Based on quantitative genetic

assumptions including Fisher’s (1918) infinitesimal genetic

model, the constraint optimization approach delivers

directly the theoretical optimum allocation of resources

given a priori known constrains (budget, costs for geno-

typing and phenotyping) and the ratios of the masking

variances to the genotypic variance for the target trait.

These ratios can initially be estimated from previous

experiments or taken from the literature but deviations are

possible for each cross, especially if the parents are related.

However, given a reasonable high budget, the optimum

allocation is quite robust with respect to these assumptions

(Fig. 5). After phenotyping of the training population has

been performed, calculation of the optimal weights in the

index can be updated with the actual variance components

measured for the target trait in the given population. In case

that further practical limitations such as limitations in the

number of available environments or the population size

N emerge, they can be easily incorporated into the set of

constraints of the model calculations.
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We provide the optimization program in an interactive

computable document format (CDF) usable with the freely

available CDF player (www.wolfram.com/cdf-player)

(Fig. 6; Online Resource 1). Users are able to adjust values

of all parameters (r2
g, r2

ge, r2
e , Me, B, CC, CG, Ns,) on the left

panel of the interface. The software not only immediately

calculates the optimum allocation for PhS and GS, but also

directly shows the amount of flexibility in resource allo-

cation the breeder has at hand for achieving a selection

gain close to the maximum. The value of DGGS at the

contour lines is directly given at the mouse pointer when

moving over the contour plot.

Conclusions

Using grain yield at the testcross level as a model trait, we

found the optimum resource allocation under GS and its

flexibility to be highly dependent on the available budget.

Under a small budget, the superiority of GS over PhS

strongly depends on the genotyping costs and the flexibility

in terms of budget splitting and the optimum number of

environments is highly restricted. Using an index com-

bining phenotypic values and GS predicted values in the

training set especially pays off under a restricted budget

and substantial contributions of genotype 9 environment

interactions. With increasing budget, the relative efficiency

of GS is increasingly more robust towards genotyping costs

or the assumed number of effective loci. However, the

focus can only start to switch from the training set towards

the prediction set, once the training population warrants

sufficiently high selection accuracy in the prediction set.

Once selection accuracy rAP
reaches *0.8, further selec-

tion gain can only be achieved by increasing the selection

intensity in the prediction set through massively expanding

its size. Reducing the costs for producing DH lines is

crucial to accomplish this step. With increasing bud-

get allocated to the prediction set, also a larger fraction of

the total selected candidates needs to be drawn from the

prediction set. However, since selection gain under GS

quickly levels off with increasing budget, it is important to

balance the number of populations with the budget spent

for each population.

Our analysis of the efficiency of GS gives a promising

perspective for increasing selection gain in line and hybrid

development, especially in the light of decreasing costs for

genotyping and further progress in the DH technology. Our

analysis demonstrates that optimizing the allocation of

resources must consider many interdependencies between

Fig. 6 Interactive graphical user interface of the optimization

software. The software (Supplementary material 1) can be used with

the freely available computable document format (CDF) player

(Wolfram research Inc., www.wolfram.com/cdf-player). Parameters

r2
g, r2

ge, r2
e , Me, B, CC, CG, and Ns can be adjusted using sliders at the

left panel. The graphical output can be deactivated to speed up

computation
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quantitative genetic parameters of the trait and population,

as well as economic parameters. Our software implemen-

tation can serve as a tool for assisting practitioners to

analyze and optimize their implementation of GS.
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tation, University of Hohenheim

Villanueva B, Dekkers JCM, Woolliams JA, Settar P (2004)

Maximizing genetic gain over multiple generations with quan-

titative trait locus selection and control of inbreeding. J Anim Sci

82:1305–1314

Xu YB, Crouch JH (2008) Marker-assisted selection in plant

breeding: from publications to practice. Crop Sci 48:391–407

Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012) Whole-

genome strategies for marker-assisted plant breeding. Mol

Breeding 29:833–854

Yabe S, Ohsawa R, Iwata H (2013) Potential of genomic selection for

mass selection breeding in annual allogamous crops. Crop Sci

53:95–105

2848 Theor Appl Genet (2013) 126:2835–2848

123


	Optimizing the allocation of resources for genomic selection in one breeding cycle
	Abstract
	Key message
	Abstract

	Introduction
	Theory
	GS as a special case of the two subsample scenario
	Selection accuracy under GS in the prediction set
	Selection accuracy for index selection in the training set
	Selection gain in the training set and in the prediction set

	Assumptions of the parameters in the model calculations
	Effective number of loci
	Budget and costs of phenotyping and genotyping
	Example trait

	Optimization of the total selection gain under GS and PhS
	Constraint optimization approach
	Relative efficiency of GS

	Results
	Optimum resource allocation for GS under variable budget
	Influence of costs, Ns, and Me on resource allocation and relative efficiency of GS
	Resource allocation for traits with different relative size of masking variances

	Discussion
	Optimum resource allocation under variable budget
	Flexibility of resource allocation
	Costs and parameters influencing the superiority of GS over PhS
	GS for traits other than grain yield
	Extensions over multiple traits and multiple selection cycles
	Constraint optimization of resource allocation as a planning tool
	Conclusions

	Acknowledgments
	References


